FIRST TERM EXAMINATION

APRIL/MAY 2018

CLASS XII

Marking Scheme - SUBJECT [PHYSICS] [THEORY]

Q.NO.	Answers	Marks	
	SECTION-A		
1.	J/C	1	
2.	Positive because negative charge moves from higher potential energy to lower potential energy.	1	
3.	$\frac{\phi}{6}$	1	
4.	If the field lines are not normal, then the electric field would have a tangential component which will make electrons move along the surface creating surface currents and the conductor will not be in equilibrium.	1	
5.	The capacitor plates will get discharged immediately. The stored energy in the capacitor changes into heat energy.		
	SECTION-B		
6.	$\begin{gathered} k \frac{4 e \times q}{x^{2}}=k \frac{e \times q}{(a-x)^{2}} \\ x=\frac{2 a}{3} \text { or } 2 a \end{gathered}$ Only $x=\frac{2 a}{3}$ is possible	2	
7.	(i) Equipotential surfaces equally spaced in the diagram along Z-direction in $x-y$ plane (ii) Gap between Equipotential surfaces keep on decreasing in the diagram along Z - direction in $x-y$ plane	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	
8.	$\mathrm{PE}=-5.0 \times 10^{-7} \mathrm{~J}$	2	
9.	(i) Due to infinitely thin metallic charged sheet (ii) Due to infinitely long wire (iii) Due to point charge (iv) Due to electric dipole	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$	
10.	$\begin{aligned} & \mathrm{C}_{\mathrm{s}}=3 \mathrm{pF} \\ & \mathrm{PD} \text { across each capacitor }=40 \mathrm{~V} \end{aligned}$ $C_{\\|}=9 p F$ Charge on each capacitor $=360 \mathrm{pC}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
11.	(i) $\mathrm{F}^{\prime}=\mathrm{F}$ (ii) Decreases	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$	
12.	(i) Graph (ii) $\Delta \mathrm{V}=0$ therefore $\mathrm{W}=\mathrm{q} \Delta \mathrm{V}=0$		

\begin{tabular}{|c|c|c|}
\hline \& SECTION-C \& \\
\hline 13. \& \begin{tabular}{l}
\(\mathrm{F}_{1}=180 \mathrm{~N}\) along BA \\
\(\mathrm{F}_{2}=180 \mathrm{~N}\) along AC \\
Resultant force
\[
F=180 \mathrm{~N}
\] \\
Resultant force \(F\) is parallel to \(B C\).
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& 11 / 2 \\
\& 1 / 2 \\
\& \hline
\end{aligned}
\] \\
\hline 14. \& \begin{tabular}{l}
Charge on shell \(A, q_{A}=4 \pi a^{2} \sigma\) \\
Charge on shell \(B, q_{B}=-4 \pi b^{2} \sigma\) \\
Charge of shell \(C, q_{C}=4 x^{2} \sigma\) \\
Potential of shell \(A\) : Any point on the shell \(A\) lies inside the shells \(B\) and \(C\),
\[
\begin{aligned}
V_{A} \& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{A}}{a}+\frac{q_{B}}{b}+\frac{q_{C}}{C}\right] \\
\& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{a}-\frac{4 \pi b^{2} \sigma}{b}+\frac{4 \pi c^{2} \sigma}{c}\right] \\
\& =\frac{\sigma}{\varepsilon_{0}}(a-b+c)
\end{aligned}
\] \\
Any point on \(B\) lies outside the shell \(A\) and inside the shell \(C\). Potential of shell \(B\),
\[
\begin{aligned}
V_{B} \& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{A}}{b}+\frac{q_{B}}{b}+\frac{q_{C}}{c}\right] \\
\& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{b}-\frac{4 \pi b^{2} \sigma}{b}+\frac{4 \pi c^{2} \sigma}{c}\right]=\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}}{b}-b+c\right]
\end{aligned}
\] \\
Any point on shell \(C\) lies outside the shells \(A\) and \(B\). Therefore, potential of shell \(C\).
\[
\begin{aligned}
V_{C} \& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{A}}{c}+\frac{q_{B}}{b}+\frac{q_{C}}{c}\right] \\
\& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{c}-\frac{4 \pi b^{2} \sigma}{c}+\frac{4 \pi c^{2} \sigma}{c}\right] \\
\& =\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}}{c}-\frac{b^{2}}{c}+c\right]
\end{aligned}
\] \\
Now, we have
\[
\begin{aligned}
\& V_{A}=V_{C} \\
\& \frac{\sigma}{\varepsilon_{0}}(a-b+c)=\frac{\sigma}{\varepsilon_{0}}\left(\frac{a^{2}}{c}-\frac{b^{2}}{c}+c\right) \\
\& a-b=\frac{(a-b)(a+b)}{c}
\end{aligned}
\] \\
or \(a+b=c\)
\end{tabular} \& 1

1
1
1

\hline 15. \& | Derivation of Electric field at axial point for the electric dipole Diagram |
| :--- |
| Derivation |
| Graph E versus r | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 2 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$
\]

\hline 16. \& | On disconnecting the battery, the charge q on the plates of capacitor remains unchanged, if the distance d is doubled, then (i) $E=\frac{q}{s_{0 A}}=E_{0}$ i.e. the electric field unchanged |
| :--- |
| (ii) $C=\frac{s_{0} A}{2 d}=\frac{1}{2} C_{0}$ i.e. the capacitance is halved. |
| (iii) $U=\frac{q^{2}}{2 C}=\frac{q^{2}}{c_{0}}$ i.e. the stored energy is doubled | \& 1

1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 17. \& \begin{tabular}{l}
Work done in moving a unit positive charge along distance \(\delta \ell\)
\[
\begin{aligned}
\left|E_{l}\right| \delta l \& =V_{A}-V_{B} \\
\& =\mathrm{V}-(\mathrm{V}+\delta V) \\
\& =-\delta V \\
\mathrm{E} \& =-\frac{\delta V}{\delta l}
\end{aligned}
\] \\
(i) Electric field is in the direction in which the potential decreases steepest. \\
(ii) Magnitude of Electric field is given by the change in the magnitude of potential per unit displacement, normal to the equipotential surface at the point.
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\) \\
\hline 18. \& \begin{tabular}{l}
\(K E\) of the electron \(=\mathrm{e} \lambda / 4 \pi \varepsilon_{0}\) \\
Graph is a straight line between KE and \(\lambda\)
\end{tabular} \& \\
\hline 19. \& \begin{tabular}{l}
Let \(A \rightarrow\) area of each plate. \\
Let initially \(C_{1}=C=\frac{\epsilon_{0} A}{d}=C_{2}\) \\
After inserting respective dielectric slabs:
\[
\begin{equation*}
C_{1}^{\prime}=K C \tag{i}
\end{equation*}
\] \\
and
\[
\begin{align*}
c_{2}^{\prime} \& =K_{1} \frac{\epsilon_{0}(A / 2)}{d}+\frac{K_{2} \epsilon_{0}(A / 2)}{d} \\
\& =\frac{\epsilon_{0} A}{2 d}\left(K_{1}+K_{2}\right) \\
c_{2}^{\prime} \& =\frac{C}{2}\left(K_{1}+K_{2}\right) \tag{ii}
\end{align*}
\] \\
From (i) and (ii)
\[
\begin{aligned}
\& C_{1}^{\prime}=C_{2}^{\prime} \\
\& K C=\frac{C}{2}\left(K_{1}+K_{2}\right) \\
\& K=1 / 2\left(K_{1}+K_{2}\right)
\end{aligned}
\]
\end{tabular} \& 1

1

\hline 20. \& Derivation of electric potential at any point due to dipole. Diagram Derivation \& $$
\begin{aligned}
& 1 / 2 \\
& 21 / 2
\end{aligned}
$$

\hline 21. \& $$
\begin{aligned}
& \mathrm{C}_{\mathrm{eq}}=100 \mathrm{pF} \\
& \mathrm{~V}_{4}=150 \mathrm{~V} \\
& \mathrm{Q}_{4}=3 \times 10^{-8} \mathrm{C}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2 \\
& 1 / 2 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$
\]

\hline 22. \& | Derivation of electric field due to long wire. |
| :--- |
| Diagram |
| Derivation | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 21 / 2
\end{aligned}
$$
\]

\hline 23. \& $$
\begin{aligned}
& C_{S}=c / 2 \quad \text { and } C_{p}=2 C \\
& U_{S}=U_{p} \\
& 1 / 2 C_{S} V_{S}^{2}=1 / 2 C_{p} V_{p}^{2} \\
& V_{S}: V_{p}=2: 1
\end{aligned}
$$ \& 1

\hline 24. \& | $\begin{aligned} & \text { Net flux } \phi=\phi_{1}+\phi_{2} \\ & \text { where } \phi_{1}=\vec{E} \cdot \overrightarrow{d S} \\ & \quad=2 a C d S \cos 0^{\circ}=2 a C \times a^{2}=2 a^{3} C \\ & \phi_{2}=a C \times a^{2} \cos 180^{\circ}=-a^{3} C \\ & \phi=2 a^{3} C+\left(-a^{3} C\right)=a^{3} C \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned}$ |
| :--- |
| Net charge $(q)=\varepsilon_{0} \times \phi=a^{3} C \varepsilon_{0}$ coulomb $q=a^{3} C \varepsilon_{0}$ coulomb. | \& \[

$$
\begin{gathered}
1 / 2 \\
1 / 2 \\
1 \\
1
\end{gathered}
$$
\]

\hline
\end{tabular}

	(i) $\begin{aligned} \phi_{L} & =E \cdot d A \cos 180^{0} \\ & =-50 \times 1 \times 25 \times 10^{-4} \\ & =-0.125 \mathrm{Nm}^{2} \mathrm{C}^{-1} \\ \phi_{R} & =E \cdot d A \cos 0^{0} \\ & =-50 \times 2 \times 25 \times 10^{-4} \\ & =-0.250 \mathrm{Nm}^{2} \mathrm{C}^{-1} \\ \phi_{\text {net }} & =\phi_{R}+\phi_{L} \\ & =0.125 \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned}$ $\text { (ii) } \begin{aligned} q & =\varepsilon_{0} q_{\text {net }} \\ & =1.107 \times 10^{-12} \mathrm{C} \end{aligned}$	$1 / 2$ $1 / 2$ 1 1
	SECTION-D	
25.	(i) Explanation of no translator motion (ii) Diagram Derivation of torque on dipole (iii) $\mathrm{W}=2 \mathrm{pE}$ OR (i) Electric lines never cross each other - explanation (ii) Diagram Derivation of electric field at equatorial point due to dipole (iii) Sketch of electric field lines	$\begin{array}{\|l\|} \hline 1 \\ 1 / 2 \\ 21 / 2 \\ 1 \\ \\ 1 \\ 1 / 2 \\ 21 / 2 \\ 1 \\ \hline \end{array}$
26.	(i) Statement of Gauss's theorem Electric field due to charged spherical shell (a) outside the shell (b) inside the shell (ii) -Q (with all working) (i) Definition of electric flux and SI unit (ii) Prove of the electric field at a point due to a uniformly charged infinite plane sheet is independent of the distance from it. (iii) Direction of electric field if (i) the sheet is positively charged, (ii) negatively charged?	1 1 1 2 $1 / 2,1 / 2$ 3 $1 / 2,1 / 2$
27.	(i) Electric field inside a dielectric decreases when it is placed in an external electric-explanation (ii) Derivation of capacitance when when dielectric of $\mathrm{t}=\mathrm{d} / 2$ is introduced between the plates OR (i) Two differences between polar and non-polar dielectric (ii) Derivation of energy stored in capacitor Derivation of energy density	2 3 2 2 1

